

Classification!

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

categorical label outputs are named "classes"

a class

White = 0 $\mathbf{Red} = \mathbf{1}$

Classification!

that's a lot of features!

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

■ categorical label outputs are named "classes"

a class

White = 0 $\mathbf{Red} = \mathbf{1}$

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Total sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol

■ Linear models might not be the best in some cases

• Free sulfur dioxide

Can I afford it?

Can I afford it?

Is it comfortable?

Can I afford it?

Is it comfortable?

Is it fashionable?

Can I afford it?

Is it comfortable?

Is it fashionable?

Can I afford it?

Is it comfortable?

that seems awfully hard-coded!

flowcharts of decisions can create an explainable and repeatable graph of predictions

Price	Comfort	Fashion
\$70	4	6
\$120	5	8
\$20	4	4
\$60	1	8
\$60	6	3
\$80	8	8

Fashion	Purchased?
6	No
8	No
4	No
8	Yes
3	No
8	Yes

Purchased?

- No
- No
- No
- Yes
- No
- Yes

No No No Yes No Yes

No	Yes
No	No
No	Yes

No	Yes
No	No
No	Yes
All no	

Which one is a better split?

(when trying to automate Decision Trees)

No	
No	No
No	Yes
Yes	
Mostly no	

Purchased?

No No 0 No Yes No 0.44 Yes

■ as a group becomes more **homogeneous**, its **Gini Impurity** decreases.

Gini impurity

Purchased? No No 0.38 No Yes No 0.5 Yes

Purchased?

No No 0 No Yes No 0.44 Yes

■ as a group becomes more **homogeneous**, its **Gini Impurity** decreases.

perfect groups => 0 Gini Impurity => 100% predictions

Gini impurity

Purchased? No No 0.38 No Yes No 0.5 Yes

Fraction of that one class Fraction of not that one in group class in the group $\boldsymbol{\mathcal{C}}$ $G = \sum P(i) \cdot (1 - P(i))$ i=1Add them up for all classes (in one side of the split)

■ **Gini impurity** measures the homogeneity in a group

Gini impurity

Purchased?

No 0 No No Yes 0.5 No Yes

0.5

Purchased?

No No 0.38 No Yes No 0.5 Yes 0.88

we gotta do better than this, right?

Purchased?

No No 0 No Yes 0.44 No

Yes

0.44

just split again!

Purchased?

No No 0 No Yes No 0.44

Yes

0.44

- Make splits (using features and thresholds) 1.
- Calculate Gini impurities 2.
- З.
- 4. If unhappy, just split again!
- 5. Repeat 1-4 as much as needed

Select the split that results in the lowest Gini impurity sum

Decision Trees Random Forest

- 1. Make a lot of decision trees, on different
 - portions of the data
- 2. For a new sample, run all of them
- 3. Combine their votes and take the majority

Random Forest

Comfort

Comfort

Comfort

we need a more complex split
Support vector machines!

Comfort

Comfort

Comfort

We gotta do better than this!

a good split maximizes distance between the split line and samples

min(distance to line, over all points) We want to make this big!

min(*distance to line, over all points*) We want to make this big!

min(*distance to line, over all points*) We want to make this big!

min(*distance to line, over all points*) We want to make this big!

- support-vector machines are classifiers that divide data by class, aiming to create a margin that's as wide as possible.
- They can use non-linear functions

Internal Memo:

146 Hagley Road, Birmingham Birmingham B3 3PJ

Attn: Sir/Madam,

I seize this opportunity to extend my unalloyed compliments of the new season to you and your family hopping that this year will bring more joy, happiness and prosperity into your house hold.

I am certain that by the time you read this letter I might have already gone back to my country United Kingdom. I visited South Africa during the New Year period and during my stay, I used the opportunity to send you this letter believing that it will reach you in good state.

From the Desk of Mr. Jerry Smith Date: 13/01/14

Internal Memo:

146 Hagley Road, Birmingham Birmingham B3 3PJ

Attn: Sir/Madam,

I seize this opportunity to extend my unalloyed compliments of the new season to you and your family hopping that this year will bring more joy, happiness and prosperity into your house hold.

I am certain that by the time you read this letter I might have already gone back to my country United Kingdom. I visited South Africa during the New Year period and during my stay, I used the opportunity to send you this letter believing that it will reach you in good state.

"unalloyed	complements"
------------	--------------

"\$100,000 dollars"

"relative dying of cancer"

From the Desk of Mr. Jerry Smith Date: 13/01/14

IF we have this "unalloyed complements" "\$100,000 dollars" "relative dying of cancer"

A|B

- Is Spam

A B

- "Nigerian Prince"

spam nigerianprince

we get this IF we have this P(spam nigerianprince)

high?

conditional probabilities can be used as a classifier!

% of spam in dataset that relates to Nigerian prince

$P(spam|nigerian prince, offer) = \frac{P(spam)P(nigerian prince|spam)P(offer|spam)}{P(nigerian prince)P(offer)}$

- conditional probabilities can be used as a classifier!
- a classifier made this way, however, is "naïve" when extended to multiple features

Classifier

multiplication for AND assumes independence! "naïve"

50%

$P(Rain \mid January 1^{st}) = 50\%$

$P(Rain | January 2^{nd}) = 50\%$

P(Rain | January 1st AND Rain | January 2nd) =45% Is NOT P(Rain | January 1st) * P(Rain | January 2nd)

st) * P(Rain | January 2nd) =25%

Naïve Bayes Classifier

$P(spam|nigerian prince, offer) = \frac{P(spam)P(nigerian prince|spam)P(offer|spam)}{P(nigerian prince)P(offer)}$

- conditional probabilities can be used as a classifier!
- a classifier made this way, however, is "**naïve**" when extended to multiple features

multiplication for AND assumes independence! "naïve"

Buy? Don't buy?

Previously accepted

Previously rejected

We find the K Nearest Neighbors

Previously accepted

Previously rejected

K Nearest Neighbors

Bounciness

K Nearest Neighbors

another hyperparameter

Bounciness

K Nearest Neighbors

another hyperparameter

Don't Buy

Bounciness

Five classifiers! That's a lot. Let's get to the lab!

