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White = 0
Red = 1

■ categorical label outputs are named “classes”

a class

• Fixed acidity
• Volatile acidity
•Citric acid
•Residual sugar
•Chlorides
• Free sulfur dioxide
• Total sulfur dioxide
•Density
• pH
• Sulphates
•Alcohol

Model

Classification! quick review
wine dataset
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Red = 1

■ categorical label outputs are named “classes”

a class

• Fixed acidity
• Volatile acidity
•Citric acid
•Residual sugar
•Chlorides
• Free sulfur dioxide
• Total sulfur dioxide
•Density
• pH
• Sulphates
•Alcohol

Model

Classification! quick review
wine datasetthat’s a lot 

of features!
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• Fixed acidity
• Volatile acidity
•Citric acid
•Residual sugar
•Chlorides
• Free sulfur dioxide
• Total sulfur dioxide
•Density
• pH
• Sulphates
•Alcohol

■ Linear models might not be the best in some 
cases
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Decision 
Trees
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Decision Trees
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Can I afford it?

7

Decision Trees



Can I afford it?

Is it comfortable?
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Decision Trees



Can I afford it?

Is it comfortable?

Is it fashionable?
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Decision Trees



Can I afford it?

Is it comfortable?

Is it fashionable?
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Decision Trees



Can I afford it?

Fashion

C
om

fo
rt

Is it comfortable?

Is it fashionable?
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Decision Trees



Can I afford it?

Is it comfortable?

No
Don’t buy

Yes

NoYes

Is it fashionable?Buy

NoYes

Buy Don’t buy
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Decision Trees



that seems awfully 
hard-coded!

■ flowcharts of 
decisions can create 
an explainable and 
repeatable graph of 
predictions

Price ≤ $100?

Comfort ≥ 8?

No
Don’t buy

Yes

NoYes

Fashion ≥ 8?Buy

NoYes

Buy Don’t buy
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Decision Trees



Price Comfort Fashion Purchased?

No
No

Yes

$70

$120

$20

$60

$60

$80

5

4 4

8

1 8

4 6

6 3

8 8

Yes

No

No
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Decision Trees



No
No

Yes

Yes

No

No

Purchased?
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Decision Trees



No
No Yes

YesNo
No
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Decision Trees



No
No Yes

YesNo
No
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Decision Trees



No
No Yes
Yes

No
NoNo

No Yes

YesNo
No

Which one is a better split?

All no Mostly no
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(when trying to automate Decision Trees)

Decision Trees



Gini impurity

0.38

0.5

■ as a group becomes more homogeneous, its Gini Impurity decreases.

Purchased?

No
No

Yes

Yes

Purchased?

No

No
No
No
Yes

Yes
No

No
0

0.44
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Decision Trees



Gini impurity

■ as a group becomes more homogeneous, its Gini Impurity decreases.

■ perfect groups => 0 Gini Impurity => 100% predictions
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0.38

0.5

Purchased?

No
No

Yes

Yes

Purchased?

No

No
No
No
Yes

Yes
No

No
0

0.44

Decision Trees



Gini impurity

𝐺 = ∑
!"#

$
𝑃(𝑖) ⋅ (1 − 𝑃(𝑖))

Fraction of that one class 
in group

Add them up for all classes
(in one side of the split)

Fraction of not that one 
class in the group

■ Gini impurity measures the homogeneity in a group
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Decision Trees



0

0.5

0.5

No

No

Yes

Yes

No

No

Purchased?
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Decision Trees



No
No

Yes

Yes

No

No

Purchased?

0.38

0.5

0.88
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Decision Trees



No
No

Yes

Yes

No

No

Purchased?

0

0.44

0.44

we gotta do better 
than this, right?
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Decision Trees



No
No

Yes

Yes

No

No

Purchased?

0

0.44

0.44

just split 
again!
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Decision Trees



1. Make splits (using features and thresholds) 

2. Calculate Gini impurities

3. Select the split that results in the lowest Gini impurity sum

4. If unhappy, just split again! 

5. Repeat 1-4 as much as needed

a hyperparameter
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Decision Trees



What if we do it a 
lot?

diverse
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Decision Trees



Random Forest
Aye Aye Aye

Aye Aye Aye Aye

Nay Nay

Nay

AYE

28

Decision Trees



1. Make a lot of decision trees, on different 

portions of the data

2. For a new sample, run all of them

3. Combine their votes and take the majority

Random 
Forest
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Decision Trees



“split”
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“split”

Comfort

Fashion

super 
comfortable

super 
fashionable
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“split”

Comfort

Fashion
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“split”

Comfort

Fashion

this is fine, 
but…

???
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“split”

Comfort

Fashion

we need a more complex split
Support vector machines!
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Comfort

Fashion
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Support Vector Machines



Comfort

Fashion
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Support Vector Machines



Comfort

Fashion
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Support Vector Machines



Comfort

Fashion
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Support Vector Machines



the “closest” points in different samples
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40



41
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■ a good split maximizes distance between 
the split line and samples

We gotta do better 
than this!

We want to make this big!
𝑚𝑖𝑛(distance	to	line, over	all	points)
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Comfort

Fashion

min(distance	to	line, over	all	points)
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We want to make this big!

Support Vector Machines



Comfort

Fashion

even better!
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min(distance	to	line, over	all	points)
We want to make this big!

Support Vector Machines



Comfort

Fashion■ support-vector machines are classifiers that divide data by 
class, aiming to create a margin that’s as wide as possible.

■ They can use non-linear functions
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min(distance	to	line, over	all	points)
We want to make this big!

even better!

Support Vector Machines
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“unalloyed complements” Spam

“$100,000 dollars” Spam

“relative dying of cancer” Spam
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“unalloyed complements” Spam

“$100,000 dollars” Spam

“relative dying of cancer” Spam

IF we have this we get this
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we get this IF we have this
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𝐴|𝐵
we get this IF we have this
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𝐴|𝐵
- Is Spam
- “Nigerian Prince”

we get this IF we have this
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𝑠𝑝𝑎𝑚|𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒
we get this IF we have this
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𝑃(𝑠𝑝𝑎𝑚|𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒)
high?
low?

spam likelyNigerian prince
not spamNigerian prince

■ conditional probabilities can be used as a classifier!

we get this IF we have this
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% of spam in 
dataset

% of spam in 
dataset that relates 
to Nigerian prince

% of Nigerian 
prince in dataset

Bayes Equation

=
𝑃(𝑠𝑝𝑎𝑚)𝑃(𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒|𝑠𝑝𝑎𝑚)

𝑃(𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒)
𝑃(𝑠𝑝𝑎𝑚|𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒)
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Naïve Bayes



=
𝑃 𝑠𝑝𝑎𝑚 𝑃 𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒 𝑠𝑝𝑎𝑚 𝑃(𝑜𝑓𝑓𝑒𝑟|𝑠𝑝𝑎𝑚)

𝑃 𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒 𝑃(𝑜𝑓𝑓𝑒𝑟)

multiplication for AND assumes independence!
“naïve”

■ conditional probabilities can be used as a classifier!
■ a classifier made this way, however, is “naïve” when 

extended to multiple features

Classifier

𝑃(𝑠𝑝𝑎𝑚|𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒, 𝑜𝑓𝑓𝑒𝑟)
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Naïve Bayes
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Naïve Bayes

50%

50%

50%

50%

Independence
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Naïve Bayes

50%

50%

50%

50%

January 1st January 2ndIndependence



P(Rain |                    )
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Naïve Bayes

January 1stP(Rain |                    ) January 2nd

=50% =50%

Independence



P(Rain |                    )

60

Naïve Bayes

P(Rain | January 1st AND Rain | January 2nd)

Is NOT

P(Rain |                    )January 1st January 2nd*
=25%

=45%

Independence



=
𝑃 𝑠𝑝𝑎𝑚 𝑃 𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒 𝑠𝑝𝑎𝑚 𝑃(𝑜𝑓𝑓𝑒𝑟|𝑠𝑝𝑎𝑚)

𝑃 𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒 𝑃(𝑜𝑓𝑓𝑒𝑟)

multiplication for AND assumes independence!
“naïve”

■ conditional probabilities can be used as a classifier!
■ a classifier made this way, however, is “naïve” when 

extended to multiple features

Classifier

𝑃(𝑠𝑝𝑎𝑚|𝑛𝑖𝑔𝑒𝑟𝑖𝑎𝑛𝑝𝑟𝑖𝑛𝑐𝑒, 𝑜𝑓𝑓𝑒𝑟)
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Naïve Bayes



Buy? Don’t buy?
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Did Buy

Rejected
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Previously accepted Previously rejected
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Previously accepted Previously rejected

More related

We find the K Nearest Neighbors
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K Nearest Neighbors

Radius

Bounciness
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Radius

Bounciness

K=5

another hyperparameter

Buy
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K Nearest Neighbors



Radius

Bounciness

K=7

another hyperparameter

Don’t Buy
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K Nearest Neighbors



Five classifiers! That’s a lot.
Let’s get to the lab!
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